CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia.
نویسندگان
چکیده
Chronic intermittent hypoxia (CIH) is a hallmark manifestation of sleep apnea. A heightened carotid body activity and the resulting chemosensory reflex mediate increased sympathetic nerve activity by CIH. However, the mechanisms underlying heightened carotid body activity by CIH are not known. An elevation of intracellular calcium ion concentration ([Ca(2+)]i) in glomus cells, the primary oxygen-sensing cells, is an essential step for carotid body activation by hypoxia. In the present study, we examined the effects of CIH on the glomus cell [Ca(2+)]i response to hypoxia and assessed the underlying mechanisms. Glomus cells were harvested from adult rats or wild-type mice treated with 10 days of either room air (control) or CIH (alternating cycles of 15 s of hypoxia and 5 min of room air; 9 episodes/h; 8 h/day). CIH-treated glomus cells exhibited an enhanced [Ca(2+)]i response to hypoxia, and this effect was absent in the presence of 2-(4-cyclopropylphenyl)-N-((1R)-1-[5-[(2,2,2-trifluoroethyl)oxo]-pyridin-2-yl]ethyl)acetamide (TTA-A2), a specific inhibitor of T-type Ca(2+) channels, and in voltage-gated calcium channel, type 3.2 (CaV3.2), null glomus cells. CaV3.2 knockout mice exhibited an absence of CIH-induced hypersensitivity of the carotid body. CIH increased reactive oxygen species (ROS) levels in glomus cells. A ROS scavenger prevented the exaggerated TTA-A2-sensitive [Ca(2+)]i response to hypoxia. CIH had no effect on CaV3.2 mRNA levels. CIH augmented Ca(2+) currents and increased CaV3.2 protein in plasma membrane fractions of human embryonic kidney-293 cells stably expressing CaV3.2, and either a ROS scavenger or brefeldin-A, an inhibitor of protein trafficking, prevented these effects. These findings suggest that CIH leads to an augmented Ca(2+) influx via ROS-dependent facilitation of CaV3.2 protein trafficking to the plasma membrane.
منابع مشابه
CaV 3 . 2 T - type Ca 2 + channels mediate the augmented calcium influx in carotid 1 body glomus cells by chronic intermittent hypoxia
متن کامل
CaV3.2 T-type Ca²⁺ channels in H₂S-mediated hypoxic response of the carotid body.
Arterial blood O2 levels are detected by specialized sensory organs called carotid bodies. Voltage-gated Ca(2+) channels (VGCCs) are important for carotid body O2 sensing. Given that T-type VGCCs contribute to nociceptive sensation, we hypothesized that they participate in carotid body O2 sensing. The rat carotid body expresses high levels of mRNA encoding the α1H-subunit, and α1H protein is lo...
متن کاملAugmentation of L-type calcium current by hypoxia in rabbit carotid body glomus cells: evidence for a PKC-sensitive pathway.
Previous studies have suggested that voltage-gated Ca(2+) influx in glomus cells plays a critical role in sensory transduction at the carotid body chemoreceptors. The purpose of the present study was to determine the effects of hypoxia on the Ca(2+) current in glomus cells and to elucidate the underlying mechanism(s). Experiments were performed on freshly dissociated glomus cells from rabbit ca...
متن کاملSpermine attenuates carotid body glomus cell oxygen sensing by inhibiting L-type Ca²(+) channels.
An increase in intracellular Ca²(+) is crucial to O₂ sensing by the carotid body. Polyamines have been reported to modulate both the extracellular Ca²(+)-sensing receptor (CaR) and voltage-gated Ca²(+) channels in a number of cell types. Using RT-PCR and immunohistochemistry, the predominant voltage-gated Ca²(+) channels expressed in the adult rat carotid body were L (Ca(V)1.2) and N (Ca(V)2.2)...
متن کاملHydrogen Sulfide and T-Type Ca2+ Channels in Pain Processing, Neuronal Differentiation and Neuroendocrine Secretion.
BACKGROUND Hydrogen sulfide (H2S), a gasotransmitter, is generated from L-cysteine by mainly 3 enzymes, cystathionine-γ-lyase (CSE), cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase in cooperation with cysteine aminotransferase. The H2S-forming enzymes, particularly CSE, are overexpressed under the pathological conditions such as inflammation, neuronal or neuroendocrine differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 115 1 شماره
صفحات -
تاریخ انتشار 2016